Viscoelastic Properties of PUR Foams
Impact excitation and dynamic mechanical analysis
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This work investigates the mechanical properties of polyurethane rigid foams by means of Dynamic
Mechanical Analysis (DMA) tests and Impulse Excitation Technique (IET). DMA tests were performed in
single cantilever with a sweep in temperature (from -50 °C to 100 °C) and frequency (from 1 Hz to 100 Hz),
not determining glass-transition in the test parameter interval. IET tests were used to determine the dynamic
modulus of elasticity, showing good accordance with DMA results
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As a special class of low density materials, cellular solids
consist of interconnected networks of cell walls and struts
incorporating voids with entrapped gas. Apart from the low
specific mass, cellular materials exhibit reduced heat
transfer, good impact resistance and good energy
absorption [1,2], which recommend them for a wide range
of applications, such as thermal insulation, floatability
applications, or packaging. Apart from the above
mentioned applications, one of the most important uses
of rigid foams in particular, from an engineering standpoint,
is in structural components of various assemblies as part
of sandwich panel cores [1,3-6, 31].

Viscoelasticity is the property of materials to exhibit the
characteristics of both solids (through the elastic
component) as well as fluids (through the viscous
component) [7-9, 31]. Though all materials display
viscoelastic behaviour (neither material showing perfect
elasticity nor perfect viscosity), the flow component is
unnoticeable in most solids while elasticity is unnoticeable
in most fluids. In the case of polymers, due to their long
chain structure, apart from the evident elastic behaviour,
viscous effects determine significant variations in
mechanical properties in terms of time (strain-rate
serllsitivity, creep/stress relaxation) or temperature (7, 10-
13].

The viscoelastic response of cellular materials becomes
noticeable in such applications where dynamic loadings
are predominant [14]. In these scenarios, the classical
measures for elasticity (Young’s modulus, the shear
modulus or the bulk modulus) are insufficient in accurately
describing the mechanical behaviour of materials. Instead,
the complex modulus M* should be used, which is
described as [7]:

M =M+i-M" M

where M’ is the storage modulus (which represents a
measure of the stored elastic potential), M” is the loss
modulus (a measure of the energy dissipated through
viscous effects) and i is the imaginary unit [7,15]. A couple
of methods of determining the above mentioned material
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characteristics are through Dynamic mechanical analysis
(DMA) and Impulse excitation technique (IET).

DMA tests have long been used in the viscoelastic
characterization of polymers and consist of applying a sine
deformation to a specimen in various loading patterns
(most common being single cantilever, double cantilever,
shear [16], tension [17,1 8% or three-point bending [19]) at
varying frequencies and temperatures [20,21]. Due to the
viscous nature of the polymers, a difference in phase
between the applied strain and the measured force will be
noticed with the help of which the components of the
complex modulus will be determined [15].

In literature, DMA studies were performed on various
cellular materials with different parameters, most
emphasis being placed on temperature dependency.
Rodriguez-Pérez et al. investigated the variation of the
dynamic moduli of polyolefin foams with temperature by
performing a temperature sweep between 125 and 240°C
[20]; Da Silva et al. investigated modified polyurethane
foams in torsion with a temperature sweep between -50
and 130°C; Chattopadhyay et al. analyzed the viscoelastic
behaviour of the polyurethane-imide/clay hybrid coatings
in nitrogen atmosphere in shear mode in a temperature
range from -30 to 200°C [16]. In terms of frequency
influence, Kanny et al. tested PVC foams in three-point
bending with densities ranging from 75 to 300 kg/m’, the
dynamic moduli showing little variation over the tested
frequency range (1-10 Hz) [19] while Saint-Michael et al.
studied the effect of filler size in DMA tests on rigid
polyurethane foams reinforced by mineral fillers at low
frequencies (from 10 up to 5 Hz) and a temperature range
of -170 up to 400°C [22].

Another way of determining the dynamic moduli of
materials is with the help of Impulse Excitation Technique.
Though not as comprehensive as DMA tests, the advantages
of this method consist of the simple test setup, reduced
costs and relative short analyses while it enables the
determination of the Poisson ratio and of possible
anisotropy.

The aim of this study is to determine the variation of
dynamic properties with temperature, frequency and
density for a rigid polyurethane (PUR) foam, the range of
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variation of test parameters being chosen according to the
usability envelope of the material for the above mentioned
applications (a temperature range of -50 °C to 100 °C and a
frequency variation between 1Hz and 100 Hz). Three
densities were tested: 100 kg/m3, 145 kg/m?® and 300 kg/
m?. DMA results were compared with IET results in order
to validate the latter method. The gathered experimental
data was used for designing a viscoelastic material for
finite element analysis simulations.

Experimental part
DMA Tests

DMA tests were performed on a machine Q800 by
applying a sinusoidal strain in dual cantilever on 60 mm x
10 mm x 4 mm prismatic specimens cut along two
directions, as presented in Figure 1.Atemperature sweep
was performed from -50 °C to 100 °C with a 10 °C step and
for 7 frequencies: 1, 3, 6, 10, 30, 60 and 100 Hz, each
frequency being tested on a given temperature step.

Figure 1 presents the results for density of 100 kg/m?,
figure 2 the results for145 kg/m? and figure 3 the results for
300 kg/m?, in each case showing the variation of the
storage modulus (a), loss modulus (b) and damping
coefficient (c) with frequency for the specimens cut along
the Y-Y axis.
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Fig. 2. Variation of (a) storage modulus, (b) loss modulus and (c)
damping coefficient with frequency for the 100 kg/m? density
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Fig. 3. Variation of (a) storage modulus, (b) loss modulus and
(c) damping coefficient with frequency for the 145 kg/m?density
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Impulse excitation tests

The impulse excitation test method measures the
fundamental resonant frequency of test specimens by
mechanically exciting them with a singular elastic strike
with an impulse tool. The induced vibration’s energy is
dissipated in the material and it has a frequency spectrum
according to its resonant frequencies which are dependent
on several material parameters such as the elastic
response, the geometry and the density [23,24]. Each
frequency will damp according to the energy absorption of
the material. The mechanisms for damping through internal
friction or mechanical loss is characteristic for each
microstructure and thus varies from one class of materials
to the other.

In order to determine elastic properties with this
technique, a non-destructive testing device named
Resonant Frequency and Damping Analyser (RFDA) was
used. It consists of an aluminium grid that supports a
number of polyamide strings on which the specimen is
placed. A mechanical impulse is induced in the specimen
with the help of a steel sphere of 6mm diameter encastred
at the end of a 100 mm flexible polymeric rod. The induced
vibrations are detected using a non-contact transducer
(microphone) and the acquired data is processed by
specialized computer software [25]. The experimental
setup is presented in figure 5.

The elastic modulus was determined on round samples
by registering the first and second natural vibrations, the
setup of the support, impulse and sensor points’ being
presented in figure 6.

NODAL CIRCLE

Fig. 6. Support,
impulse and
sensor points
for first and
second natural

vibration

11 — First impulse point 1 12 — Second impuise point 2

S1 - First sensor point 1 S2 — Second sensor point 2

For the first natural vibration mode, the nodes are located
along two orthogonal diameters; offset 45° from the point
where the vibration was induced. The anti-nodes are
located along two orthogonal, 90° offset, diameters in the
disc, with one diameter intersecting the point where the
vibration was induced. For the second natural vibration
mode, the nodes are located in a circle concentric with
the centre of the disc with fractional radius of 0.681 of the
disc radius. The anti-nodes are located at the centre and
around the circumference of the disc specimen.

The Poisson’s Ratio can be determined directly from the
experimental values of the first natural resonant frequency
(f) and the second natural resonant frequency (f,), the
value for Poisson’s Ratio is interpolated using the ratio of
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Fig. 5. Experimental setup for the impulse
excitation method

the second natural resonant frequency to the first natural
resonant frequency (f/f ) is correlated with the ratio of the
specimen thickness to the specimen radius (¢/).

For the elastic Modulus of round disc samples, two values
of Young’s modulus are calculated (E and E )from the two
resonant frequency measurements (eq 2 and 3), the final
value of Young’s Modulus being determined as their average

(eq.3).
[37.6991- £2 D?ml1 - 2]

E =
1 K12t3 (2)
5 76991 2071 1] 3)
' K
Ee E +E, )

where E is Young’s Modulus (MPa), E, is the first natural
evaluation of Young’s modulus, E, is the second natural
evaluation of Young’s modulus, f, “and f, are the first and
second natural resonant frequenc1es of the disc (Hz), D is
the diameter of the disc (mm), m is the mass of the disc
(kg), u is the Poisson’s Ratio, K, and K, are the first and
second natural geometric factors ¢t is the thickness of the
disc (mm) and r is the radius of the disc (mm)

In order to compare the elastic modulus determined by
impulse excitation technique to the values obtained by
means of DMA tests, the complex modulus must be
determined from DMA data, with the help of equation (5)

M*=M'+l"1 (- /M'2+,M"2 (5)

The comparison between the impulse excitation results
and the DMA results for the three densities is presented in
table 1, IET determining higher values, between 6.7 and
27.7%.

Results and discussions

The results of the anisotropy study show that, despite
the similarity in variation pattern of the recorded propetties,
the specimens cut along the X-X direction exhibit lower
propetties than the ones cut along the Y-Y direction, showing
average variations of around 16% for the density of 100 kg/
m?, 5% for the density of 145 kg/m? and 8 for the density of
300 kg/m®. Such a difference in the variation of storage
and loss modulus with temperature at 10 Hz is presented
in figure 7 for the 100 kg/m®.

Considering the aspect presented in experimental part
as well as for other tests performed on this material [26-
29] it can be observed that the PUR foam with 300 kg/m?
density has a different behaviour compared with the other
two densities. This behaviour can be associated with the
different types of structure of the PUR foam at different
densities. Figure 4 presents SEM imagery of the three
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100 4546 4179 43.41 35.16 36.01 6.71 27.75

145 72.44 65.82 67.76 62.43 64.51 845 1413

300 324.94 282.96 301.21 260.41 278.89 11.24 20.50
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Fig. 8. SEM images of PUR foams with measured
cell diameters for a) 100 kg/m® density, b) 145 kg/
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threedensities

A = ,
1E-19 1E-15 1E-11 1E-07 0.001 10 100000 1E+09  1E+13
Frequency [Hz]

investigated densities which shows that the structure of For several cases of low temperature (-50 ..-70 °C) and

the 100 kg/m® and 145 kg/m® densities can be considered  high frequencies (60 and 100 Hz), the damping coefficient
that of a cellular material while the structure of the 300kg/  becomes negative, which corresponds to an unstable

m’resembling more a porous solid. propagation of oscillations in the material, thus gaining
_The experimental programme consisting of DMA tests  driving properties instead of damping (self-excitation) [31].
with a temperature sweep from -50°C to 100 °C was not The time-temperature superposition for the three

able to determine the glass transition temperature of the  densities is presented in figure 9.
studied PUR foams. Literature studies suggested a glass
transition temperature of approximately 150 °C [30], this  Acknowledgements: This work was partially supported by the strategic
temperature being, however, outside the usability envelope  grant POSDRU/159/1.5/S/137070 (2014) of the Ministry of National
of the investigated materials. Education, Romania, co-financed by the European Social Fund -
Regardless of the foam density, frequency has a smaller  jnvesting in People, within the Sectoral Operational Programme Human
effect on the viscoelastic parameters than temperature:  Resources Development 2007-2013 and by the CNCS - UEFISCDI grant
the largest variation in storage modulus with frequency  pN.JLID-PCE-2011-3-0456, contract number 172/2011. The authors would
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